
Outline

• Introduction
• Surface MSM overview

• Getting Started
• Surface Microseismic Monitoring (MSM) Architecture

• Web server and dashboard application
• RESTful file service
• IoT for seismic
• HPC using Rocket

• Additional remarks on AQP preparedness
• Conclusions

Introduction

• In last decade or so, trend has been away from desktop to devices,
proliferation of video/audio/text/image

• Couple this with the explosion of connected devices/internet/bandwidth
improvements/human mobility -> back to the mainframe/client model (which
was eclipsed by the desktop in the 70s onward), now we call the mainframe
‘cloud’, consists of remote, networked computers

• Vendors have provided cloud offerings for many years, everything is a
service eg., Infrastructure, Databases, Software, Platforms and more (ala the
terminology “x as a Service”)

Introduction

• For example, in Amazon Web Services (AWS) language:

• Storage/file service (IaaS) -> S3 (simple storage service)
• NoSQL Database (DBaaS) -> dynamoDB
• Compute (Iaas/Saas) -> Elastic Cloud Compute (EC2), Lambda
• Web App Hosting (PaaS) -> Elastic Beanstalk

Introduction

• Realtime surface microseismic monitoring (MSM) has been moved to a services/
cloud architecture, but still need to support desktop applications, legacy software,
possibly field/processing truck installations without connection to cloud

• Need several platforms and languages to support all:
• C/C++ for numerically intensive work, node + mongo DB for web application

backend, python and bash scripting for plumbing, angular for web UI, python for
desktop UI

Surface MSM Overview

• SurfaceMSM has at least 4 major computational steps:

1. Modeling/LUT generation
• Coarse grained for initial detection/location
• (Re) calculated for every re-processed/refined event
• Velocity model may go through various stages of refinement too eg., using perf

shots
• May also create statics to account for elevation differences between receivers

Surface MSM Step 1: Modeling / LUT generation

• Model a region around well (left image, blue line) using 1D-layered velocity model
• Perform raytracing to produce a lookup table for subsequent migration

Surface MSM Overview

2. Signal Acquisition + DSP steps
• Stacking, filtering etc

3. Migration
• Uses LUT

4. Detection + Location
• STA/LTA on migration volume, automatic threshold/pick, smooth and fit maxima

• As implied, these major steps are completed in at least two passes, one coarse grained and
one in refinement after QC

Surface MSM Step 2: Acquisition + DSP

• Passively acquire data from receivers arranged in lines, patches or some combination, typically
> 1K channels (blue circles: locations), traces are grouped after moveout correction (red
squares)

Surface MSM Step 2: Acquisition + DSP

• Events are usually very small in magnitude, DSP steps like filtering, stacking etc applied to
enhance signal

Surface MSM Step 3: Migration

• Requires at least 10-20GB and 4 threads for 200 trace groups, 10s second of record (1s to process 1s of
data for realtime), requiring a powerful laptop or more likely HPC (to be discussed)

• Left: evolving migration isosurface up to t0, right: slice through the migration volume at t0

Surface MSM Step 4: Detect + Locate
• We apply STA/LTA to migration volume at every time step, look for maxima in profile (left image), threshold to

find potential events.

• Those that are suitably QC’d (eg., correct moveout profile, migration image) are fit for location x,y,z and
display/reporting (right)

Outline

• Introduction
• Surface MSM overview

• Getting Started
• Surface Microseismic Monitoring (MSM) Architecture

• Web server and dashboard application
• RESTful file service
• IoT for seismic
• HPC using Rocket

• Additional remarks on AQP preparedness
• Conclusions

Getting Started

• In moving to cloud architecture, obviously begin by laying out the overall
workflow, understand the problem

• Helps to think in terms of basic linux terms/components;
• What are the processes and files?
• Where will they run or be stored?

• How will parameters be captured and stored?
• How will components communicate?

Getting Started

• Communication
• Processes:

• Light (clients, small memory, short running ~ 1s), run locally on virtual machine
• Heavy (large memory, threaded, longer running >> 1s), run using rocket HPC

• Parameters/non-binary data:
• Input via web application / dashboard
• Storage in mongo DB

• Binary data:
• RESTful file service for input seismic
• Upload/processing also via IoT nodes

Getting Started

• Generally communication should use websockets or REST
• Representational State Transfer (REST) systems communicate over Hypertext

Transfer Protocol using verbs eg., GET, POST, PUT, DELETE
• Systems are addressed using Uniform Resource Identifiers (URIs)
• The data type for information exchanges is frequently JSON or XML

• Processes will invariably need to run on Linux instances

Getting Started
• All C/C++ compiled into single library, librtpSeismic.so, alongside dependencies, suited to CentOS 7

bash-4.2$ ls Deliverables/DragonFly/.lib

libboost_atomic.so libboost_serialization.so libfftw3.so.3
libboost_atomic.so.1.61.0 libboost_serialization.so.1.61.0 libfftw3.so.3.4.4
libboost_date_time.so libboost_system.so libhdf5_cpp.so
libboost_date_time.so.1.61.0 libboost_system.so.1.61.0 libhdf5_cpp.so.12
libboost_filesystem.so libboost_thread.so libhdf5_cpp.so.12.0.0
libboost_filesystem.so.1.61.0 libboost_thread.so.1.61.0 libhdf5.so
libboost_program_options.so libboost_wserialization.so libhdf5.so.10
libboost_program_options.so.1.61.0 libboost_wserialization.so.1.61.0 libhdf5.so.10.2.0
libboost_python.so libfftw3f.so libmseed.so
libboost_python.so.1.61.0 libfftw3f.so.3 libmseed.so.2
libboost_regex.so libfftw3f.so.3.4.4 libmseed.so.2.13
libboost_regex.so.1.61.0 libfftw3.so librtpSeismic.so

Outline

• Introduction
• Getting Started
• Surface Microseismic Monitoring (MSM) Architecture

• Web server and dashboard application
• RESTful file service
• IoT for seismic
• HPC using Rocket

• Additional remarks on AQP preparedness
• DELFI requirements

• Conclusions

MSM Dashboard

• A single page application (SPA) served using MEAN; nginx provides gateway

internet

node mongo

queries

data
nginx

requests

responses

SAuth

user/browser

SSL+key

MSM Dashboard

• MEAN is:
• Mongo DB
• C++ implementation of NoSQL, a high-perf, scalable database technology.
• Wrapped by Mongoose.js in this case

• Express.js
• Web development framework suited to Node.js

• Angular.js
• Dynamic frontends using javascript (Angular 1) or typescript (Angular 2)

• Node.js
• Javascript runtime engine built on Google Chrome V8 engine (backend)

MSM Dashboard

• Design of dashboard UI draws strongly from the Single Page App design and
philosophy:
• Provide experience similar to desktop app
• Initially load all static content (*html, *css, *js), update views as user interacts

with UI
• Angular JS (client side, runs in browser):

• communication with web server, retrieving data through API calls
• bindings between data model(s) and the view(s)

• Third parties for widgets eg., INT geotoolkit for seismic views, Angular UI

MSM Dashboard

• Data API based on CRUD -> Create, Retrieve, Update, Delete docs from DB
• Configuration (project schema)

• survey, processing parameters etc
• Input seismic data (record schema)

• health and record meta data from edge nodes, if applicable
• start times, size etc

• Event data generated by computation (event schema)

Project schema encode how input record schema are transformed into event
schema

MSM Dashboard

• Data API methods represent about 50% of the operations handled by node + express
backend

• Additionally node.js is used to control many (light) asynchronous processes at
once
• Light processes should eventually take advantage of serverless computing eg.,

cloud functions, AWS lambda
• Heavy computations offloaded to Rocket via thin client(s)/light processes

MSM Dashboard

• For example, launching a process with node + express, in response to GET request from dashboard (code extract from
server):

router.route('/msm_service/stop') 
 
 .get(function(req, res) { 
 
 if (req.query.project != undefined) {  
 
 const pid = uploadPath + "/" + req.query.project + "/msmservice_pid";  
 const comm = uploadPath + '/../bash/kill_msmservice.sh ' + pid;  
 
 exec(comm, function(error, stdout, stderr) { 
 
 if (error != null) {  
 console.log('exec error: ' + error); 
 }
…  
 });

MSM Dashboard

• Example processes attached to node process tree
• Client for communicating hooke job to/from rocket HPC

MSM Dashboard

• Example: C++ client controlled by node GETs data from file service

std::string request = "GET " + m_route;
 request+="?ID="+m_job_id;
 request+="&project="+m_project_name;
 request+="&time="+time;
 request+=" HTTP/1.1\r\nHost: "+m_file_server_ip+"\r\n";
 …

 boost::asio::io_service io_service;
 boost::asio::ip::tcp::resolver resolver(io_service);
 boost::asio::ip::tcp::resolver::query query(m_file_server_ip.c_str(), "443");
 boost::asio::ip::tcp::resolver::iterator iterator = resolver.resolve(query);

 boost::asio::ssl::context ctx(boost::asio::ssl::context::sslv23);
 ctx.load_verify_file("/etc/ssl/certs/apache.pem");
 rtpSeismic::acquisition::ssl_client c(io_service, ctx, iterator,request,ln);
 io_service.run();

Outline

• Introduction
• Getting Started
• Surface Microseismic Monitoring (MSM) Architecture

• Web server and dashboard application
• RESTful file service
• IoT for seismic
• HPC using Rocket

• Additional remarks on AQP preparedness
• DELFI requirements

• Conclusions

RESTful File Service

• Directly inspired by AWS Simple Storage Service (S3), uses:
• Linux,Apache,MongoDB, PHP

• Record JSON documents are generated by the file service when:
• Legacy data is exported to service
• File service will run pre-processing for legacy data, in response to GET

requests via dashboard shown previously, reducing bandwidth

• Data is POSTed from IoT nodes using cellular modems on SLB network,
discussed next
• multi-part form data + compression + https

RESTful File Service

• Example record JSON document generated by service on received of form +
payload from IoT node:

"jobID":"123",
"time":"1470219450", // when the data was acquired
"client":"100.124.32.3", // who sent it
"modified":"1470219491", // when it was received
"diff":"41", // latency
….
"file":"1470219450_100.124.32.3.tar.gz",
…
"ch0":"24", // number of channels
"h0":"30648", // humidity
lon0":"950080351", // longitude
"lat0":"293759108", // latitude
…
nn1":"12", // nearest receiver index

RESTful File Service

• Seismic data acquisition and upload to service from IoT nodes is initiated from
dashboard

fetch

node meta in
mongo

pre
Process

ssh

3G/4G

IoT devices, FIELD

httpd3G/4G

https + API key

seismic
on disk

seismic

POST

SSL + key

IoT for seismic

IoT for seismic

• IoT nodes run in-house software(‘fetch’) for communication with certain
seismic acquisition devices.
• Software performs request segmentation, alleviating network pressure/TCP

congestion control on local network in the field.

• IoT are spatially aware ie., knows where in total spread it’s situated, can
perform moveout + stack using nearest neighbor receivers (‘preProcessPatch’)

• After stack and compression, same process POSTs to file server
• Compression is lossless, simply uses zlib (gzip)

IoT for seismic

• Successfully measured/optimized key variables in the field:
• Supply battery discharge rates (~ 48 hours for 80 AmpH batt)
• Latency between acquisition time + time of reception in Houston

from field location, cellular modem bandwidths, etc etc
• Can operate with as little as ~ 1 KB/s per channel

IoT for seismic

• Using network modestly and well is key to passing Network Application QP

Latency between 100.124.32.10 and 137.144.131.202
02/14/16-02/15/16

La
ten

cy
 (s

)

0

40

80

120

160

Acquisition time (UTC)
17:34:00 19:06:30 20:39:00 22:11:3023:44:00 1:16:30 2:49:00 4:23:30 5:56:00 7:28:30 9:01:00 10:33:30 12:06:00 13:38:30 15:11:00

Outline

• Introduction
• Getting Started
• Surface Microseismic Monitoring (MSM) Architecture

• Web server and dashboard application
• RESTful file service
• IoT for seismic
• HPC using Rocket

• Additional remarks on AQP preparedness
• DELFI requirements

• Conclusions

Rocket HPC
• Rocket is largely Java middleware, which allows client software (eg., managed by

node at web server) to launch and run services, scheduled/managed by Torque.
• Rocket communicates job details to Torque, which runs simple PBS/bash scripts that

wrap applications

let start=$(date +%s)

#PBS -l nodes=1:ppn=4
#PBS -l mem=14gb

argline="$(<argline)"

$ROCKET_SERVICE/bin/computeVTILookUpTable.x --jp jobParameters.csv &> /dev/null
$ROCKET_SERVICE/bin/msmService.x $argline

let end=$(date +%s)
let tot=$end-$start
echo server execution time $tot

node meta in
mongo

httpd

https + key

seismic
on disk

Torque

Rocket HPC head node

websocket
Java

SSL + key

worker
nodes

Rocket HPC

Additional remarks

• Many components/failure points in service architecture; log verbosely to allow
for debugging eg., here client managed by dashboard GETs file from service

Additional remarks

• Last but not least:
• Get to know and love SELinux; strange failures are usually related eg., update booleans to allow

httpd daemon to network connect
• You may need to manage firewalls on IoT and other devices yourself ie., get to know firewall-cmd
• Invest in securing nginx/apache etc, else you will fail penetration testing eg., reject endpoint

requests that don’t exist on your server: 

location ~/*.php{

 return 404;

}

Conclusions
• Moving to cloud in a compliant manner is challenging but not impossible
• Think in terms of vendor offerings (services) and linux

• What are your processes/files/data/communication
• Be conservative with resources eg., bandwidth
• Be specific with fireflow/firewall requests, know your architecture
• Testing/scanning is applied throughout CSQP, remove redundant endpoints in

your server configurations
• Obtain official certificates and FQDN early in your development process

